Lesson 11.1.4

- 11-38. **a.** $\approx -2.3, 0, 3.3$ **b.** 2, -3 **c.** ≈ -3.7
- d. No

- 11-39. a. -1, -2, -6
 - **b.** There is no solution because you cannot divide by zero.
 - c. No; the error occurs when the denominator is 0, and 3 is the only value that causes that to happen.
 - **d.** All numbers except $x = 3 \sim D$: $\times \neq 3$
- 11-40. a. Yes; each input has exactly one output.
- **b.** $-2 \le x \le 4$
- c. $-1 \le y \le 3$
- d. No; he is missing all the values between those numbers. The curve is continuous, so our description needs to include all the numbers, not just the integers.
- 11-41. See solutions below.
 - **a.** D. $-3 \le x \le 3$, R. $-3 \le y \le 3$
- **b.** D. $-\infty < x < \infty$, R. $-\infty < y < \infty$
- **c.** D. $-2 \le x \le 4$, R. $-4 \le y \le 2$ **d.** D. $-\emptyset < x < \emptyset$, R. y = 4
- e. D. $2 \le x \le 4$, R. $-3 \le y \le 2$
- **f.** D. -2, -1, and 4, R. -4, -1, 1, and 2
- 11-42. a. No; we only know that the integers used in the table worked. We do not know about the numbers between the integers or those beyond the table.
 - **b.** Not quite. If we knew that f(x) was a parabola, then (0, -4) would be the vertex and then the range would be the set of numbers greater than or equal to -4. However, since we were not told the rule, that is an assumption. In fact, we cannot even assume that the relation is continuous; it could just consist of the points listed in the table.
 - c. No.

- **a.** $-\infty < x < \infty$ **b.** All y-values greater than -2. There are many possible solutions. See example at right. 11-43.
- 11-44.
- 11-45. a. not a function as more than one y-value is assigned for x between -1 and 1 inclusive **b.** appears to be a function
 - c. not a function because there are two different y-values for x = 7
 - **d.** function
- 11-46. **a.** x-intercepts (-1, 0) and (1, 0), y-intercepts (0, -1) and (0, 4)
 - **b.** x-intercept (19, 0), y-intercept (0, -3)
 - **c.** x-intercepts (-2, 0) and (4, 0), y-intercept (0, 10)
 - **d.** x-intercepts (-1, 0) and (1, 0), y-intercept (0, -1)
- 11-47. Marisol. y = 2x, Mimi. y = 3x - 3, solution: x = 3 hrs, so 6 miles
- 11-48. No; the slope of \overrightarrow{AB} is $\frac{3}{5}$, while the slope of \overrightarrow{AC} is $\frac{5}{8}$ and the slope of \overrightarrow{BC} is $\frac{2}{3}$.
- **a.** $x = 6 + \frac{2}{3}y$ **b.** $y = \frac{3}{2}x 9$ **c.** $r = \frac{d}{t}$ **d.** $r = \frac{C}{2\pi}$ **11-50. a.** $\frac{2x-5}{x-6}$ **b.** x + 411-49.